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The superoxide dismutase (SOD) family of proteins are necessary to protect

oxygen-utilizing cells from the toxicity of reactive oxygen species. The delivery

of SOD into tissues is severely limited by its size and biochemical properties. A

cell-membrane-permeable SOD, SOD-TAT, has been demonstrated to have the

ability to be directly transduced into mammalian cells. In this study, the SOD-

TAT fusion protein was expressed, purified and crystallized. Crystals of the

SOD-TAT fusion protein diffracted to 3.20 Å resolution and belonged to space

group C121.

1. Introduction

Superoxide dismutases (SODs) are a class of enzymes that catalyze

the dismutation of superoxide into oxygen and hydrogen peroxide

(Quinlan et al., 1994; Tsan, 1997). There are three known forms of

SOD in mammalian cells: manganese-containing superoxide dismu-

tase (Mn-SOD), copper- and zinc-containing superoxide dismutase

(CuZn-SOD) and extracellular superoxide dismutase (EC-SOD).

The SOD family of proteins are necessary to protect oxygen-utilizing

cells from the toxicity of reactive oxygen species (ROS).

A cell-membrane-permeable SOD was constructed by a recombi-

nant gene technique and named SOD-TAT. The recombinant protein

was a fusion of human CuZn-SOD with a cell-penetrating peptide

(YGRKKRRQRRR) derived from the HIV-1 Tat protein transduc-

tion domain TAT at the C-terminus. Protein transduction domains

are small peptides that are able to carry larger molecules such as

peptides, full-length proteins and even 200 nm liposomes across

cellular membranes (Josephson et al., 1999; Lewin et al., 2000; Wadia

& Dowdy, 2002). They have proven to be useful in delivering bio-

logically active cargoes both in cell culture and in vivo in animal

models. It has been demonstrated that SOD-TAT can be directly

transduced into mammalian cells across the lipid membrane barrier

(Kwon et al., 2000). Subsequent research has shown that SOD-TAT

is effective in protecting against ischaemic brain injury, preventing

and treating damage to guinea pig skin caused by single-dose UVB

radiation etc. (Kim et al., 2005; Pan et al., 2009, 2010).

To understand the biochemical function of SOD-TAT, it would be

valuable to determine its three-dimensional crystal structure. In this

study, we report the expression in Pichia pastoris, purification and

crystallization of the SOD-TAT fusion protein. In addition, diffrac-

tion data were collected from SOD-TAT crystals and processed to

3.20 Å resolution. These results will provide the basis for the ultimate

structure determination of SOD-TAT, which should shed light on the

biochemical role of this protein in the cell-penetration process.

2. Materials and methods

2.1. Construction of SOD-TAT expression strain

According to a previously described procedure (Liu et al., 2003),

XhoI and XbaI sites were introduced into the 50 and 30 ends of the

coding region of SOD-TAT in pBluescript II SK(+) (pBS) plasmid

synthesized by Shango Bioengineering Co. Ltd (Shanghai, People’s

Republic of China). The SOD-TAT product was digested with

XhoI and XbaI and subcloned into pPICZ�A (Invitrogen, USA)

digested with XhoI and XbaI, generating the recombinant plasmid
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pPICZ�A-SOD-TAT, which contains the cDNA of SOD-TAT

downstream of an �-factor signal sequence between AOX promoter

and terminator. 10 mg pPICZ�A-SOD-TAT was linearized by SacI

and integrated into the genome of P. pastoris strain X-33 by elec-

troporation. Transformants were plated on YPDS plates containing

100 mg ml�1 Zeocin. Zeocin-resistant colonies were used as expres-

sion strains.

2.2. Expression of SOD-TAT

A Zeocin-positive colony was inoculated into 100 ml YPD medium

containing 100 mg ml�1 Zeocin and incubated at 303 K for 1 d with

shaking at 200 rev min�1. The cells were harvested, washed with

sterilized water and resuspended in BSM medium. Recombinant

SOD-TAT was expressed for 8 d at 303 K according to the Pichia

Fermentation Process Guidelines (Invitrogen); 1.0% methanol was

added every 24 h to induce secretion of SOD-TAT.

2.3. Protein purification

2 g lyophilized protein powder was dissolved in 10 ml 20 mM

phosphate–citrate buffer solution pH 6.0 and centrifuged (10 000g,

10 min). The clear supernatant was desalted and applied onto a

UNOsphere S ion-exchange chromatography column (Bio-Rad;

1.6 � 10 cm) pre-equilibrated with 20 mM phosphate–citrate buffer

pH 6.0 at room temperature at a flow rate of 1 ml min�1. Elution was

carried out with a step gradient of 20 mM phosphate–citrate buffer

containing 0.4 and 1 M NaCl. The purity of the protein was verified

by SDS–PAGE and Coomassie Blue staining. The peak fraction with

SOD activity was pooled, desalted, concentrated to 36 mg ml�1 and

stored at 253 K until use.

2.4. Crystallization and X-ray data collection

Initial conditions for crystallization were screened using an in-

house PEG screening kit. Crystallization trials for SOD-TAT fusion

protein were performed at 287 K using the hanging-drop vapour-

diffusion method in 24-well plates. Typically, 2 ml reservoir solution

was mixed with 2 ml protein solution and equilibrated against 1 ml

reservoir solution. A complete diffraction data set was collected

on beamline BL17U1 at Shanghai Synchrotron Radiation Facility

(SSRF; People’s Republic of China). Diffraction experiments were

conducted at 100 K and the images were recorded with an ADSC

Q315r CCD area detector. The data set was collected at a wavelength

of 0.9792 Å and was processed to 3.20 Å resolution. Intensity data

were integrated and scaled using the HKL-2000 suite (Otwinowski &

Minor, 1997).

3. Results

SOD-TAT fusion protein was overproduced in P. pastoris and puri-

fied to homogeneity by UNOsphere S ion-exchange chromatography

(Fig. 1). The protein was concentrated to 36 mg ml�1 for crystal-

lization trials.

After one week, small crystals of SOD-TAT were obtained from

0.1 M sodium chloride, 0.05 M Tris–HCl pH 8.0, 12%(w/v) PEG 3350.

Many variables were changed in order to obtain diffraction-quality

crystals, including the type of salt, the pH of the Tris–HCl buffer, the

concentration of PEG 3350 etc. After further optimization, diffracting

crystals (Fig. 2) were obtained using 0.05 M magnesium chloride,

0.05 M Tris–HCl pH 8.5, 15%(w/v) PEG 3350, 2.5%(v/v) glycerol.

Crystals of the SOD-TAT fusion protein diffracted to 3.20 Å

resolution and belonged to the monoclinic space group C121, with
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Figure 1
Purification of SOD-TAT fusion protein. Protein samples were analyzed using
12.5% SDS–PAGE followed by Coomassie Blue staining. Lane M, protein
molecular-weight marker (labelled in kDa); lane 1, reduced SOD-TAT; lane 2,
nonreduced SOD-TAT.

Figure 2
Crystals of SOD-TAT fusion protein grown using the hanging-drop vapour-
diffusion method.

Table 1
Data-collection statistics.

Values in parentheses are for the highest resolution shell.

Beamline BL17U1, SSRF
Wavelength (Å) 0.9792
Crystal-to-detector distance (mm) 400
Oscillation range per frame (�) 1
Resolution (Å) 50.0–3.20 (3.26–3.20)
Space group C121
Unit-cell parameters (Å, �) a = 181.83, b = 112.58,

c = 82.57, � = 111.74
No. of molecules per asymmetric unit 6
Matthews coefficient (Å3 Da�1) 3.85
Solvent content (%) 68.03
No. of observed reflections 498872
No. of unique reflections 24396
Completeness (%) 95.5 (96.9)
Multiplicity 20.4
Average I/�(I) 14.1 (3.0)
Rmerge† (%) 11.5 (39.3)

† Rmerge =
P

hkl

P
i jIiðhklÞ � hIðhklÞij=

P
hkl

P
i IiðhklÞ, where Ii(hkl) is the intensity of

observation i of reflection hkl and hI(hkl)i is the mean intensity of reflection hkl.



unit-cell parameters a = 181.83, b = 112.58, c = 82.57 Å, � = 111.74�.

Diffraction data were collected and processed (Table 1) with a final

Rmerge value of 11.5% (39.3% for the highest resolution shell). The

data completeness, data multiplicity and average I/�(I) value of the

collected data set were 95.5%, 20.4 and 14.1, respectively (96.9%, 20.4

and 3.0, respectively, for the highest resolution shell).

Self-rotation function computations using the program MOLREP

from the CCP4 suite (Winn et al., 2011) confirmed the presence of

NCS sixfold axes (� = 60� section; Fig. 3). Based on consideration of

the Matthews coefficient, the most probable number of SOD-TAT

molecules in the asymmetric unit is six. In this case the Matthews

coefficient is 3.85 Å3 Da�1, corresponding to a solvent content of

68.03%. Molecular replacement and structure refinement are

currently in progress.

We are grateful to the staff of beamline BL17U1 at the Shanghai

Synchrotron Radiation Facility for excellent technical assistance
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Figure 3
Stereographic projections of various sections of the self-rotation function calculated using data for the SOD-TAT crystal: (a) � = 180�, (b) � = 90�, (c) � = 120�, (d) � = 60� .



during data collection. This work was supported by grants from the
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